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“Smart” Materials and Potential Applications

Active materials exhibit a dramatic, controllable phase transformation

Shape Memory Alloys (SMA):

• thermal → mechanical work

• First discovered in 1932 by

A. Ölander

• Came to forefront of materials

research in 1960s [W.J. Buehler]

• Potential for:

vibration damping,

nanomachinery SMA Arterial Stent

(from smet.tomsk.ru)

Other active materials with similar phase transformation behavior
include Ferromagnets, Piezoelectrics.
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First-Order Martensitic Phase Transformation

Materials change elasticity, crystal structure according to temperature
and stress:

Austenite

Twinned Martensite Deformed Martensite
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Shape Memory Effect

(adapted from J. Ryhänen)

Austenite:

High Symmetry (cubic)

Single Structure

Stiff (∼ Titanium)

Martensite:

Low Symmetry (tetragonal)

Multiple Structures

Ductile (∼ Soft Pewter)

Deformations Move Twinning Planes
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General Thermodynamic Model

Continuum thermodynamic description given by the nonlinear system

(velocity) u̇ = v,

(viscoelastic) ρ0v̇ = ρ0∂
2
xγΨ + α ∂2

xxv + ρ0b,

(energy) ρ0cpθ̇ = ρ0 θ ∂2
γθΨ γ̇ + α (γ̇)2 + κ∂x (γ ∂xθ) + ρ0r,

where (x, t) ∈ [0, L]× IR+.

We subject the wire to

• Given initial conditions {u0, v0, θ0},
• Boundary conditions corresponding to fixed left end of wire, free

right end of wire in both space and temperature.
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The Helmholtz Free Energy

Material physics described through an expanded form of the
Landau-Devonshire potential:

Ψ(γ, θ) =W(γ, θ) + cpθ(1− ln θ)

+ Dθ + E,

W(γ, θ) = WM (γ)CM (θ)

+WC(γ)CC(θ)

+WA(γ)CA(θ)

W∗(γ) – isothermal elastic profiles
C∗(θ) – smoothly connect in θ

Strain Energy Density  W(γ,θ)
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Strain energy density W(γ, θ) provides material phase transformation
and satisfies all measurable material constants for stable states.

5



'

&

$

%

Treatment of the Mathematical Model

Weak solution u, v, θ to nonlinear system

u̇ = v,

ρ0v̇ = ρ0∂
2
xγΨ + α ∂2

xxv + ρ0b,

ρ0cpθ̇ = ρ0 θ ∂2
γθΨ γ̇ + α (γ̇)2 + κ∂x (γ ∂xθ) + ρ0r

Requires:

• Space-discretization – piecewise-affine finite elements
(limited regularity of expected weak solutions)

• Time-discretization – continuous-time Galerkin method
(discrete Lyapunov function, uniform treatment of space/time)

• Nonconvex optimization – continuation method utilizing
viscosity-regularized solutions and Newton’s method

• Linear systems – sparse, non-restarted GMRES using ILU precond.
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Nonlinear Instabilities

Desire “small” viscosity solutions: physical experiments observe little
or no viscous effects [Seelecke, Heintze, Bergman 2003]

However, small α induce:

• Inflection points at moment
of phase transition

• Numerical instability in
Newton method iterates.

0

σ(γ)
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Unsuccessful ‘Black Box’ Attempts

• Damped Newton Algorithm:

– Combines Newton with a standard linesearch algorithm

– Stagnates iterates at the inflection point (phase transition)

• Tunneling Newton Algorithm [Levy, Gomez] and
Terminal Repeller [Cetin, Barhen, Burdick]:
– Replaces root-finding problem f(x) = 0 with e.g.

f̂(x) =
f(x)− f(xs)

‖x− xs‖α = 0

– Unreliable on large-scale problems (> 10 opt. variables)

– Highly dependent on tuning parameters to provide reasonable
pole locations, strengths and restarting values
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Unsuccessful Attempts (Continued)

• Newton with Physically-Intuitive Restarts:

– At transition, restart Newton with iterate in newly stable phase

– Difficult to algorithmically account for full nonlinear effects

• Piecewise Convexification of Strain Energy W(γ, θ):

– Use piecewise convex projection of W to get past transition
Original W( γ,340)

γ

W

γ

W

Convexified W( γ,340)

– Deviates too far from physics to remain relevant
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Variable Viscosity Newton Method

Resolve instabilities through changing viscosity level:

1. Keep viscosity low/zero until phase transition

2. Increase viscosity to remove instability

i.e. add weighted Laplacian to smooth out nonlinearity

3. Progressively decrease coefficient α to “pull” perturbed solution over

energy barrier toward zero-viscosity solution

Similar to other methods for nonlinear problems:

• Method of Vanishing Viscosity [Hopf 1950; Lax 1954] for scalar

hyperbolic equations

• Traditional regularization methods used for inverse problems
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Variable Viscosity Newton Method (Continued)

Benefits over other solution methods:

• Considerably smaller final viscosity than prescribed by theory

• Inflated viscosity necessary only for short period of time

• Viscous effects on overall system are measurable

• Resulting algorithm much faster than other global methods
(Simulated Annealing, Genetic Algorithms)

Performance figures:

• During “normal” time steps, takes ∼3 Newton steps and ∼7 Krylov
iterations per Newton step

• During phase transitions, same figures as above for each viscosity
level, and ∼5 viscosity levels per time step
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Computations and Visualization

1-D deformation constitutes

elongation/contraction

Displacement plotted for clarity:

positive = elongation

negative = contraction

Phase plots:

Yellow = austenite

Red/Blue = martensite±

Constant Value

∆x 10 µm

∆t 1 µs

ρ0 6.45 ∗ 103 kg m−3

κ 10 W (m K)−1

cp 322 J (kg K)−1

Ea 7.5 ∗ 1010 Pa

Em 2.8 ∗ 1010 Pa

θA 350 K

θC 335 K

θM 320 K

NiTi simulation constants
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Results – Martensite to Austenite Transformation

Heat supply r(x, t) positive and constant.
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Results – Austenite to Martensite Transformation

Heat supply r(x, t) negative and constant.
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Latent Heat

Nonlinear latent heat effects are measured by enthalpy jumps. Model
successfully predicts these for thermally-induced transformations:
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Hysteresis Test

Model predicts nonlinear hysteretic effects, which measure possible
thermal → mechanical work:
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Benefits and Limitations of This Approach

(+) Clean, predictive approach to thermodynamic modeling of phase
transitions

(+) Successfully describes both phases of SMA, crystalline phase
transformation, material properties, large temperature range

(±) All material physics included in the Helmholtz free energy

(−) Does not account for polycrystalline structure and material defects
of production alloys

(−) One-space dimension loses some physics of full material
transformation
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Directions for Future Research

• Improve the nonlinear, nonconvex solver to provide scalability to
higher dimensions

• Further validation and tuning of free energy with physical
experiments

• Extend modeling system to thin films (2-D) and solids (3-D)

• Examine approaches based on a stochastic description of free
energy (polycrystalline materials, defects)
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